Hydraulic Hybrid from Rexroth: Hydrostatic Regenerative Braking System HRB

Recover Energy – Reduce Emissions
“Hybrid” has its origin in the Greek language and means: “Mixture or combination of two things.” Hybrid vehicles use two types of energy to attain optimum propulsion. Combustion engine demand is reduced by hybrid technology, giving the user two big advantages: lower fuel consumption and a significant reduction in emissions. The most common hybrid technologies are electric and hydraulic hybrids.

Characteristics of an electric hybrid:
- Excess motor power is continuously accumulated in a battery over a longer time period (blue) and accessed as needed (light blue).

Characteristics of a hydraulic hybrid:
- The kinetic energy from braking is fed to a hydraulic accumulator (blue) and immediately reused for starting (light blue).

Advantages of the HRB

Environment
- Fewer harmful emissions, less pollution.
- Help in meeting future emissions and environmental requirements.
- Reduced brake wear, lower braking noise, and less brake dust.

Costs
- Significant reduction in operating costs.
- Durable Rexroth components reduce maintenance needs.
- More economical than other hybrid concepts.

Function
- High functional reliability and low risk of failure.
- Simple maintenance and long service life.
- Ideal solution for new systems or retrofits.

Energy
- Reduced fuel consumption to preserve energy.
- Fuel-neutral system – can be combined with diesel, gasoline, or other types of motors.
- Increased vehicle range.

Hydraulic hybrids are ideal for vehicles with frequent, short start-stop cycles, such as public transit buses, refuse trucks, forklifts, pneumatic tire rollers, telehandlers, swap body movers and much more.
The HRB is a hydraulic hybrid for vehicles with no hydrostatic transmission: For example, vehicles used in refuse collection and public transit buses. Use of an HRB system results in significant fuel savings of up to 15% and improved acceleration – depending on the focus of the application.

Fuel savings of up to 25% possible

How HRB works

Storing braking energy
The hydraulic axial piston unit 1 is coupled to the mechanical drive train through a gearbox 2. When braking, the axial piston unit converts kinetic into hydraulic energy and pumps hydraulic fluid into the pressure accumulator 3, increasing the pressure in the accumulator.

Reusing the stored energy to assist the vehicle drive
The pressurized hydraulic fluid in the accumulator drives the axial piston unit, which now acts like a motor. Hydraulic energy is converted into kinetic energy. The axial piston unit remains coupled to the mechanical drive train until the pressure accumulator is discharged. The valve control block 4 controls the filling and discharge cycle and protects the accumulator from excessive pressure. The electronic controller 5 operates the HRB. In “normal” drive mode the Hydrostatic Regenerative Braking System is decoupled.
Bosch Rexroth AG
Hydraulics
Glockeraustraße 4
89275 Elchingen, Germany
Tel. +49 7308 82-0
Fax +49 7308 72-74
info.brm@boschrexroth.de
www.boschrexroth.com/hrb